JOM 22019PC
Prelininary communication

Synthesis and characterisation of a pyrazine bridged bis-allyl ruthenium(IV) complex. Crystal structure of $\left[\left\{\left(\eta^{3}: \eta^{3}-\mathrm{C}_{10} \mathrm{H}_{16}\right) \mathrm{RuCl}_{2}\right\}_{2}\left(\mu-\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~N}_{2}\right)\right] \cdot 2 \mathrm{CHCl}_{3}$

Jonathan W. Steed and Derek A. Tocher *
Department of Chemistry, University College London, 20 Gordon Street, London WCIH OAJ (UK)

(Received April 8th, 1991)

Abstract

The reaction of pyrazine with the ruthenium(IV) bis-allyl dimer $\left[\left(\eta^{3}: \eta^{3}-\mathrm{C}_{10} \mathrm{H}_{16}\right) \mathrm{RuCl}(\mu-\mathrm{Cl})\right]_{2}$ gives the bridged binuclear complex $\left[\left\{\left(\eta^{3}: \eta^{3}-\mathrm{C}_{10} \mathrm{H}_{16}\right) \mathrm{RuCl}_{2}\right\}_{2}\left(\mu-\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~N}_{2}\right)\right]$ in high yield. The complex has been characterised by ${ }^{1} \mathrm{H}$ NMR spectroscopy and by a single-crystal X-ray diffraction study.

The organometallic chemistry of transition metals in high formal oxidation states is an area of growing interest [1,2]. An organometallic compound that has been known for many years yet has been little studied is the ruthenium(IV) dimer $\left[\left(\eta^{3}: \eta^{3}-\mathrm{C}_{10} \mathrm{H}_{16}\right) \mathrm{RuCl}(\mu-\mathrm{Cl})\right]_{2}$ [3], which is rather surprising given the profusion of studies on the related chloro-bridged ruthenium(II) dimers $\left[\left(\eta^{6} \text {-arene }\right) \mathrm{RuCl}(\mu-\mathrm{Cl})\right]_{2}$.

The crystal structure of $\left[\left(\eta^{3}: \eta^{3}-\mathrm{C}_{10} \mathrm{H}_{16}\right) \mathrm{RuCl}(\mu-\mathrm{Cl})\right]_{2}$ shows that the complex has C_{i} symmetry in the solid state, with the coordination about each metal atom best described as trigonal bipyramidal [4]. Nevertheless ${ }^{1}$ H NMR studies clearly establish that in solution two diastereoisomers are present [5]. While one isomer is assumed to have the C_{i} symmetry observed in the solid state it is proposed that the second isomer has C_{2} symmetry. In coordinating solvents the dimer is observed to be cleaved and exist as both equatorially and axially solvated monomers [5]. Reactions with neutral monodentate ligands also result in bridge cleavage and the formation of the simple adducts $\left[\left(\eta^{3}: \eta^{3}-\mathrm{C}_{10} \mathrm{H}_{16}\right) \mathrm{RuCl}_{2} \mathrm{~L}\right]\left(\mathrm{L}=\mathrm{CO}, \mathrm{PR}_{3}, \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right.$, $\left.{ }^{\text {t }} \mathrm{BuNC}\right)[6,7,8]$. In this report we present our preliminary results on the synthesis of polynuclear compounds containing the " $\left[\left(\eta^{3}: \eta^{3}-\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{Ru}\right]^{2+}\right.$ " unit.

The reaction of $\left[\left(\eta^{3}: \eta^{3}-\mathrm{C}_{10} \mathrm{H}_{16}\right) \mathrm{RuCl}(\mu-\mathrm{Cl})\right]_{2}$ with between 1 and 10 molar equivalents of pyrazine in chloroform proceeds smoothly to give a compound with the stoichiometry $\left[\left\{\left(\eta^{3}: \eta^{3}-\mathrm{C}_{10} \mathrm{H}_{16}\right) \mathrm{RuCl}_{2}\right\}_{2}\left(\mu-\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~N}_{2}\right)\right]$ as the sole product ($\mathrm{C}, \mathrm{H}, \mathrm{N}, \mathrm{Cl}$ analysis). The formation of appreciable quantities of the monomeric compound $\left[\left\{\left(\eta^{3}: \eta^{3}-\mathrm{C}_{10} \mathrm{H}_{16}\right) \mathrm{RuCl}_{2}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~N}_{2}\right)\right]\right.$ was only observed when >15 molar equivalents of the ligand were used. The ${ }^{1} \mathbf{H}$ NMR spectrum of the dinuciear compound recorded in CDCl_{3} exhibited twice as many resonances as was expected

Fig. 1. Molecular structure of $\left[\left\{\left(\eta^{3}: \eta^{3}-\mathrm{C}_{10} \mathrm{H}_{16}\right) \mathrm{RuCl}_{2}\right\}_{2}\left(\mu-\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~N}_{2}\right)\right]$ showing the atom numbering scheme adopted. Selected bond lengths $(\AA): \operatorname{Ru}(1)-N(1) 2.191(10), \mathrm{Ru}(1)-\mathrm{Cl}(1) 2.406(3), \mathrm{Ru}(1)-\mathrm{Cl}(2)$ $2.425(3), \mathrm{Ru}(1)-\mathrm{C}(1) 2.226(13), \mathrm{Ru}(1)-\mathrm{C}(2) 2.303(12), \mathrm{Ru}(1)-\mathrm{C}(3) 2.256(15), \mathrm{Ru}(1)-\mathrm{C}(6) 2.240(16)$, $\mathrm{Ru}(1)-\mathrm{C}(7) 2.264(14), \mathrm{Ru}(1)-\mathrm{C}(8) 2.235$ (12). Selected interbond angles $\left({ }^{\circ}\right): \mathrm{Cl}(1)-\mathrm{Ru}(1)-\mathrm{Cl}(2) 170.2(1)$, $\mathrm{Cl}(1)-\mathrm{Ru}(1)-\mathrm{N}(1) 85.4(2), \mathrm{Cl}(2)-\mathrm{Ru}(1)-\mathrm{N}(1) 84.8(2), \mathrm{Cl}(1)-\mathrm{Ru}(1)-\mathrm{C}(2) 101.7(3), \mathrm{Cl}(1)-\mathrm{Ru}(1)-\mathrm{C}(7)$ $83.3(4), \mathrm{Cl}(2)-\mathrm{Ru}(1)-\mathrm{C}(2) 82.4(3), \mathrm{Cl}(2)-\mathrm{Ru}(1)-\mathrm{C}(7) 100.8(4), \mathrm{C}(2)-\mathrm{Ru}(1)-\mathrm{C}(7) 131.2(5), \mathrm{N}(1)-\mathrm{Ru}(1)-$ $\mathrm{C}(2)$ 114.7(4), $\mathrm{N}(1)-\mathrm{Ru}(1)-\mathrm{C}(7) 114.2(5)$.
for this formulation (e.g. four terminal allyl signals at $\delta 4.65,4.62,4.39$, and 4.34 ppm). However, since both pyrazine resonances appeared as-singlets (at $\delta 9.32$ and 9.23 ppm) we were confident that the products were binuclear pyrazine-bridged species. It is likely that the doubling of the number of signals can be attributed to the presence of diastereoisomers similar to those observed in solutions of [$\left(\eta^{3}: \eta^{3}-\right.$ $\left.\left.\mathrm{C}_{10} \mathrm{H}_{16}\right) \mathrm{RuCl}(\mu-\mathrm{Cl})\right]_{2}$ [5]. To establish conclusively the structure of the product formed in this reaction we carried out a single crystal structural analysis *.

The X-ray study shows (Fig. 1) that in the crystalline material only one of the isomers is present. That isomer has overall C_{i} symmetry, while the organic ligands have local C_{2} symmetry. This arrangement is similar to that observed for the parent chloro-bridged dimer in the solid state [3,4]. The geometry about the crystallographically unique metal ion is that of a distorted trigonal bipyramid with the chloride ligands occupying the axial positions, $\mathrm{Cl}(1)-\mathrm{Ru}(1)-\mathrm{Cl}(2)$ bond angle $170.2(1)^{\circ}$, and the organic moiety and neutral pyrazine ligand occupying the

[^0]equatorial sites. Equatorial coordination of a neutral ligand was also observed in the X-ray crystal structure of $\left[\left(\eta^{3}: \eta^{3}-\mathrm{C}_{10} \mathrm{H}_{16}\right) \mathrm{RuCl}_{2}\left(\mathrm{PF}_{3}\right)\right]$ [8]. The $\mathrm{Ru}-\mathrm{N}_{\text {(pyrazine) }}$ distance is $2.19(1) \AA$, which is considerably greater than that observed in several well defined $\left[\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Ru}(\mu \text {-pyz }) \mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5}\right]^{n+}(n=4,3,6)$ ions, $1.99-2.11 \AA$ [9]. It is however similar to that observed in the organometallic ruthenium(II) cation [($\eta^{6}-p$ $\left.\left.\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{CHMe}_{2}\right) \mathrm{Ru}(\mathrm{pyz})_{2} \mathrm{Cl}\right]^{+}, 2.17 \AA$ [10], although of course the pyrazine ligands in that complex are only coordinated to a single metal. The pyrazine ligand is inclined at an angle of 38.0° to the plane of the metal ion and halide ligands. The most likely structure for the second isomer, observed in solution, would have overall C_{2} symmetry. Since the isomer ratio is independent of the precise conditions used in the synthesis we intend to study and report the kinetics of isomerism reaction at a later date.

Finally, using analogous synthetic procedures to those described above we examined the reaction of $\left[\left(\eta^{3}: \eta^{3}-\mathrm{C}_{10} \mathrm{H}_{16}\right) \mathrm{RuCl}(\mu-\mathrm{Cl})\right]_{2}$ with $1,3,5$-triazine. In contrast to the results described above, these reaction lead to mixtures of products, viz. $\left[\left(\eta^{3}: \eta^{3}-\mathrm{C}_{10} \mathrm{H}_{16}\right) \mathrm{RuCl}_{2}\left(\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}_{3}\right)\right]$, $\left[\left\{\left(\eta^{3}: \eta^{3}-\mathrm{C}_{10} \mathrm{H}_{16}\right) \mathrm{RuCl}_{2}\right\}_{2}\left(\mu-\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}_{3}\right)\right]$, and $\left[\left\{\left(\eta^{3}: \eta^{3}-\mathrm{C}_{10} \mathrm{H}_{16}\right) \mathrm{RuCl}_{2}\right\}_{3}\left(\mu-\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}_{3}\right)\right]$.

Acknowledgements. We thank Johnson Matthey plc for generous loans of ruthenium trichloride and the SERC for financial support (J.W.S.) and for provision of the X -ray equipment.

References

1 C. Che, W. Cheng and T.C.W. Mak, J. Chem. Soc., Chem. Commun., (1987) 418.
2 W.A. Hermann, Angew. Chem., Int. Ed. Engl., 27 (1988) 1297.
3 L. Porri, M.C. Gallazzi, A. Colombo and G. Allegra, Tetrahedron Lett., (1965) 4187.
4 A. Colombo and G. Allegra, Acta Crystallogr., B27 (1971) 1653.
5 D.N. Cox and R. Roulet, Inorg. Chem., 29 (1990) 1360.
6 R.A. Head, J.F. Nixon, J.R. Swain and C.M. Woodard, J. Organomet. Chem., 76 (1974) 393.
7 D.N. Cox and R. Roulet, J. Chem. Soc., Chem. Commun., (1988) 951.
8 P.B. Hitchcock, J.F. Nixon and J. Sinclair, J. Organomet. Chem., 86 (1975) C34.
9 U. Furholz, H.-B. Burgi, F.E. Wagner, A. Stebler, J.H. Ammeter, E. Krausz, R.J.H. Clark, M.J. Stead and A. Ludi, J. Am. Chem. Soc., 106 (1984) 121.
10 D.A. Tocher, R.O. Gould, T.A. Stephenson, M.A. Bennett, J.P. Ennett, T.W. Matheson, L. Sawyer and V.K. Shah, J. Chem. Soc., Dalton Trans., (1983) 1571.

[^0]: * Crystal data for $\mathrm{C}_{2 s} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{Cl}_{10} \mathrm{R} u_{2}: M=935.27$, a 7.297(2), b 9.889(2), c 13.411(4) \AA, a 70.77, β 83.29, $\gamma 89.70^{\circ}, V 906.9 \AA^{3}, Z=1, d_{\text {calc }} 1.71 \mathrm{~g} / \mathrm{cm}^{3}, F(000) 466, \mu\left(\mathrm{Mo}-K_{\alpha}\right) 15.8 \mathrm{~cm}^{-1}$, triclinic space group $P \overline{1}$ (the asymmetric unit contains one half of the centrosymmetric molecule and one molecule of chloroform of crystallisation).
 Structure determination: A crystal of dimensions $0.10 \times 0.17 \times 0.30 \mathrm{~mm}$ was used to collect 3122 unique data in the range $5^{\circ} \leqslant 2 \theta \leqslant 50^{\circ}$ on a Nicolet $\mathrm{R} 3 \mathrm{~m} / \mathrm{V}$ diffractometer equipped with graphite-monochromated Mo- K_{α} radiation. The data were corrected for Lorentz and polarisation effects, and for crystal decay (ca. 40\%). The structure was solved by conventional Patterson and difference-Fourier techniques. Non-hydrogen atoms were refined anisotropically while hydrogens were placed in idealised positions ($\mathrm{C}-\mathrm{H} 0.96 \AA$) and assigned a common isotropic thermal parameter ($U=0.08 \AA^{2}$). Full-matrix least-squares refinement gave $R=0.064$ and $R_{w^{\prime}}=0.066$ ($w^{-1}=\sigma^{2}(F)+0.0008 F^{2}$) for the 1864 unique data with $I \geqslant 3 \sigma(I)$. All calculation were performed on a MicroVax II computer using shelxtl plus software. A table of atom coordinates and a list of bond lengths and angles has been deposited at the Cambridge Crystallographic Data Centre.

